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1. Scientific Questions
Read the paper “Association of Highly Restrictive State Abortion Policies With Abortion Rates, 2000-2014”
on Canvas (called abortion_policies.pdf). Then, respond to the following prompts.

a. Summarize the paper in 2-3 paragraphs using your own words.

b. Write out the model that adjusts for distance in Table 3 and explain how you derived it. You may need
to do some research into the methods used or make some assumptions based on what the authors write.

c. How does this model relate to the overall research question? Evaluate this approach to answering the
question in 2-3 paragraphs. Be sure to mention the limitations of the approach and assumptions made.

d. If you had access to the same data, how might you extend this analysis to address the points in the
previous question (1-2 paragraphs).

Solution

a. This study aims to combine county-level abortion rate data from several states where restrictive abortion
laws may have been implemented to evaluate the association between statewide highly restrictive
legislative climates and changes in abortion rates in the years between 2000 and 2014. Specifically, the
study identified states that imposed abortion restrictions of 4 different types, categorizing a state as
highly restrictive if it implemented at least 3 of them, and defined a county-level abortion rate as the
total number of abortions obtained in a given year divided by the total female population (in a given
county). Additionally, in light of the fact that many of these policies have resulted in clinics being shut
down, thereby posing additional travel-related barriers to individuals seeking abortions, researchers
sought to investigate whether the association between legislative climate and abortion rate might be
mediated by distance to the nearest facility providing abortion care—estimated by the straight-line
distance between a county’s population centroid and that of the closest county having a high-volume
facility. This study was primarily motivated by an effort to bring attention to the potential harms
placed on individuals who need abortions by quantifying the degree to which restrictive abortion laws
inhibit access to abortion care.

Given the nature of the data and research endeavors, longitudinal data analysis was carried out through
a series of linear regression models within a propensity score–weighted difference-in-difference framework.
Due to the difficulty of assessing individual-level changes in abortion care access however, the analysis was
generalized to the county-level with propensity score weights derived from county-specific demographic
data, as well as state and year fixed effects to hold potentially confounding state-level differences and
temporal trends constant across groups. In contradiction to prior state-specific data that suggest an
association between restrictive laws and clinic closures, which increase travel distances, the study did
not find a statistically significant relationship between the two. Notably however, results showed that a
highly restrictive policy climate is in fact associated with a lower abortion rate. Specifically, it was
estimated that highly restrictive legislative climates were associated with an abortion rate decrease of
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0.48 abortions per 1000 women, when compared to a less restrictive climate. Moreover, in models that
only considered states that became highly restrictive during the study period and in those that adjusted
for distance to a facility, the highly restrictive legislative climate was associated with an abortion rate
decrease of 0.45 and 0.44 abortions per 1000 women, respectively, with the latter estimate decreasing by
an additional 0.02 abortions per 1000 women for each unit (miles) increase in distance to a facility. Given
that the difference-in-difference model compares groups of counties that only vary (on average) with
regards to the introduction of the investigated policies—assessing changes in abortion rates over time,
with all other demographic factors constant—this result suggests that restrictive climates themselves
may act as barriers to abortion care access.

b. Given the information provided in the paper and the nature of difference-in-difference models with
two-way fixed effects, we follow the logic provided in Chapter 18 of The Effect: An Introduction to
Research Design and Causality, after having referred to similar sources (e.g., Difference-in-Differences,
Designing Difference in Difference Studies: Best Practices for Public Health Policy Research), to modify
the standard model such that it handles multiple time periods of interest as depicted in the figure
provided in the study. Particularly, as suggested in the paper and further explained in the external
source linked above, this may be done by including dummy variables in the model; one for each time
period of interest in relation to a baseline year, which in our case, is the year preceding an introduction
of a highly restrictive climate. In accordance with the two-way fixed effects model structure implied in
the paper, we identify the unit and time fixed effects as “state” and “year”, respectively. Under the
assumption that a “unit” corresponds to one of the two identified groups of counties, the time-invariant
fixed effect of “state” removes potential confounding due to state-based differences within legislative
climate groups. Similarly, the group-invariant fixed effect of “time” holds potentially confounding
temporal trends constant. An attempt to recreate this model, adjusting for distance, is given below.

Let,

• Y be the continuous outcome of interest—change in abortion rate in number of abortion cases per
1000 women between the current year and the baseline year.

• αs and αt be the state and year fixed effects, respectively.
• Tb±k for k ∈ [1, 6], be the set of binary indicator (dummy) variables for time periods k (in number

of years) before (-) or after (+) the baseline year b—identified to be the year before the introduction
of a highly restrictive climate.

• X be the binary indicator for highly restrictive legislative climate.
• D be the continuous variable for distance (in miles) to the nearest abortion facility.

Y = αs + αt + βb−6Tb−6X + ...+ βb+6Tb+6X + τD + ε

c. This model addresses the question of whether there exists an association between a highly restrictive
legislative climate and abortion rates to the extent of statistical significance in the coefficients given
the available data. Specifically, as stated in the paper, each coefficient in the model verifies whether a
change in abortion rate in the years around the adoption of a highly restrictive climate are in fact due
to a shift in policy. This is due to the fact that the difference-in-difference model with two-way fixed
effects accounts for potentially confounding state-based differences within the two groups, as well as
conflicting temporal trends in the data, thereby isolating the effect of legislative climate on abortion
rates.

Nonetheless, the strong assumptions made by this model pose a few problems for the inferential
claims made in turn. The most significant among these is the parallel trends assumption, which holds
that the two groups being compared would have shown the same trends in abortion rates had the
legislative climate remained minimally or moderately restrictive in the “post-adoption” period for both
groups. This suggests moreover, that the effect of legislative climate on abortion rates is constant (i.e.,
homogeneous), such that the adoption of highly restrictive policies is the only factor that differentiates
the two groups. The problem with assuming parallel trends when it comes to internal validity and
inference is that the the effect of “treatment”, which in our case corresponds to a highly restrictive
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legislative climate, is likely heterogeneous due to the sheer variability and randomness regarding county
or “unit” characteristics that, even in the presence of additional data, may not be entirely ruled out by
similar “pre-adoption” period trends or captured by state-based and temporal differences.

Researchers address the limitations related to both including a diverse set of states in their analyses, and
ignoring existing differences between those included and “those that did not provide usable data”, by
admitting to the possibility of having obtained different results in the presence of additional state data.
Although, due to the small share of observed differences in variables, they claim that this is unlikely to
be a considerable source of bias. This claim however, is made on the basis of observed data and does not
account for potential bias due to unmeasured confounding, making results arguably nongeneralizable to
all states. Additional limitations addressed by the investigators regarding the models’ ability to answer
the research question(s) include: the fact that abortion rates reflect the number of abortion cases in a
given period as a proportion of an entire female population, as opposed to the share of the population
that is fertile; the fact that the data only covers abortion rates and policies relevant to years before
2014, not accounting for numerous restrictive laws that have been implemented in more recent years;
and the inability to produce statistically significant results regarding the association between restrictive
policy climate and distance to a facility.

d. With access to the same data, assuming no access to external sources, it would be difficult to address
many of the limitations identified by the researchers; particularly the last three, which require more
recent and more specific data on different U.S. populations (e.g., fertile females in various U.S. counties,
county-level demographics across a wider set of states, etc.). However, with knowledge about the
average shares of female populations that are fertile for example, it may be possible to generate more
accurate estimates of abortion rates from the available data. Investigators in the study have already
taken several steps to minimize potential bias and increase their chances of satisfying the parallel
trends assumption. Specifically, having implemented propensity-score weighting to make counties more
comparable; including fixed effects in the model to minimize potential confounding; allowing for some
deviation through confidence intervals; and using cluster-robust standard errors to account for potential
autocorrelation.

Given that the parallel trends assumption is strong, untestable, and not easily satisfiable however,
an additional way of limiting bias would be to extend the analysis to include a step for analyzing
groups. Specifically, instead of making groups comparable on account of all covariates, we may choose
to condition on different subsets/combinations of covariates to identify differences in average effects of
legislative climate and hence potential sources of bias related to the way the groups were originally
formed (“treatment assignment”). Generating different groups for comparison in this way may help
explain some of these “less obvious”, but nonetheless relevant, differences that can’t otherwise be
accounted for solely through additive fixed effects. Additionally, given the fact that confounding can’t be
ruled out, in tandem with the significant lack of information on all states, it seems crucial to emphasize
that results are statistically significant for the states and counties included in the data, as the degree to
which they generalize to the entire nation remains unknown by reason of insufficient data.

3



2. Missing Data
The pain clinic data we saw in class has follow-up information on a subset of patients. If we were interested
in analyzing the change in pain over time, it would be important to think about the missing data due to loss
to follow-up.

a. First, describe the patterns of missing data observed in the data set overall.

b. Compare the baseline characteristics between those with and without follow-up information. Comment
on your results and discuss whether you think the data is MCAR, MAR, or MNAR.

c. Suppose we wanted to fit a model to assess risk of having worse pain at follow-up. To address the
missing information, we are considering either using inverse probability weighting or multiple imputation.
Explain briefly the steps we would take in each case and discuss the benefits and drawbacks to each
approach. Which would you apply in this case?

Solution

a. Without taking into account patient study indicators (PATIENT_NUM), log transformations of the baseline
and follow-up BODYREGIONSUM features, or the single missing observation across all variables in the
data—likely due to a file conversion error—we find that, in total, approximately 33.23% of the dataset
is missing. Moreover, given the considerable number of features reflected in the pain clinic data, we
group variables by “type” to produce a more generalized and meaningful analysis. Specifically, the first
plot below gives a comparison of the distributions of missing data (in proportions) for each of the five
chosen categories of variables. Conversely, the subsequent three plots provide the densities of missing
baseline and follow-up features across observations, broken up by the number of missing baseline and ,
and other study features, respectively. Noticeably, the middle graph shows us that the study variables
we define as “other” are likely tied to the follow-up features given their apparent proportionality. Note
that a log transformation was used for visualization purposes in this particular case given the wide
range of possible missing follow-up values due to pain region indicators. While both of these approaches
were effective in showing the primary sources of missingness and their relative trends in the data, the
six graphs that follow provide an even more robust visualization of these patterns.
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The six missing data pattern plots above are arranged for comparison&mdash;the first two plots giving baseline and follow-up pain regions; the middle two comparing the same set of "other" features at baseline and follow-up, and the last two giving the remaining baseline features and other study variables. In other words, the left-hand column of plots depicts all baseline features, while the right-hand column depicts all follow-up features and other study variables, which we assume to be related to follow-up data and other study objectives. As can be seen, the baseline features constitute most of the observed data, missing at most 14% jointly in each category and 3.1% in total, but they are not entirely devoid of missingness&mdash;`IMPRESSION_PAINCENTERIMPACT` and `IMPRESSION_TREATMENTIMPACT`, for example, are each missing 86.25% of observations. On the other hand, 67.6% of all follow-up observations are missing in total, with every follow-up feature showing a positive percentage of missing data. This suggests an evident association between baseline and follow-up features. Specifically, we can expect missingness in the follow-up period of the study to be related to paticipants dropping out or failing to provide information, as is commonly seen in practice.

b. In terms of the identifying the type of missingness reflected, it could be argued that, given the clear
split between missing and non-missing data in the follow-up period shown in the right-hand column of
pattern plots above, data are MNAR, at least in this regard, as this missingness appears more deliberate
and systematic. Generally however, it is safe to conclude that data are most likely MAR. Particularly,
since there is an association between missingness in follow-up features and baseline features we can
assume a potential underlying reason behind participants’ tendencies to drop out of the study or fail to
report certain follow-up information.

To investigate this baseline and follow-up relationship and see whether it missingness in the follow-up
data can be attributed to any observed variable(s), we fit a linear regression model on a new variable;
followup_missing giving the number of missing follow-up features for each observation; which, after
backward selection, showed statistical significance for the following covariates:

• baseline_missing: continuous variable for the number of missing baseline features
• other_missing: continuous variable for the number of missing other study features
• PROMIS_PHYSICAL_FUNCTION1: continuous variable for the PROMIS physical function T-score
• IOC_RESP_5: binary indicator for whether IMPRESSION_PAINCENTERIMPACT “Very Much Improved”

at follow-up

This suggests that lack of responses at follow-up may be related individuals’ levels of physical functionings
and whether or not they saw significant improvements in pain impacts (on their everyday lives). Notably,
since IOC_RESP_5 had no missing values and a statistically significant coefficient that was negative and
smaller for significant improvement compared to minor or no improvement with regards to pain impact,
it is possible that individuals are more likely to report follow-up information (and have less missing
follow-up features) when they’ve seen significant improvements in the impact pain has had on their
lives. This indicates and further supports the claim that data are MAR2.

c. If our goal is to model the risk of displaying worse pain in the follow-up period from the available data
and simultaneously limit bias in our estimates, it is crucial to implement a more substantive approach
to addressing the amount of missing data since it is too large to justifiably restrict our analysis to
complete cases. In the scenario that we choose to implement inverse probability weighting (IPW),
our focus would be on giving more weight to individuals in the study who appear more likely to have
missing observations, but in fact show the contrary. In other words, we want to weight individuals
according to the inverse probability of not having any missing values, that is, being a “complete case”,
such that those who are twice as likely to have incomplete data, but do not, count for two observations.
In this way, we appeal to what our data would have been like, had it not been subject to missingness.
Specifically, we many obtain such IP weights via logistic regression—modeling the probability of being a
complete case, given all other features in the data. In turn, we may use them in tandem with our data to
estimate one’s risk of increased pain while minimizing potential bias. In the case of multiple imputation
(MI), our focus would be on imputing the missing values for each variable by way of sampling from a
joint probability distribution (data likelihood) n times. This would produce n different realizations of
our dataset from which to obtain n risk estimates of increased pain that may be averaged out. Both of
these methods have their own benefits and limitations to consider. For our purposes however, it would
be best to adopt the latter approach of multiple imputation—namely, given the nature of the data (e.g.,
no one observation is missing all relevant features, variables are relatively easy to model, etc.) and the
prevalence of missingness we observe, this method would yield the most accurate results.

1Significant at the 0.1 level.
2It should be noted that while IOC_RESP_5 had no missing values, the related IMPRESSION_PAINCENTERIMPACT follow-up feature

had a considerable amount of data missing. The reason for this discrepancy is not known, but should be further investigated as
it poses a problem for our regression-based assumption of data being MAR.
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Code Appendix

## Libraries

library(tidyverse)
library(visdat)
library(naniar)

## Data

pain <- read.csv("/Users/antonellabasso/Desktop/PHP2550/Data/pain.csv")
head(pain)

## Initial Data Exploration

# general
dim(pain)
sum(is.na(pain$PATIENT_NUM)) # 1 missing patient ID
sum(length(unique(pain$PATIENT_NUM))) # 21659-1=21658 unique patient IDs

# 1 row/observation completely missing
pain[is.na(pain$PATIENT_NUM), ]
# error due to (possibly) file conversion
# seen previously with the same dataset

# removing missing observation (not relevant for our analysis)
pain <- pain[!is.na(pain$PATIENT_NUM), ]

## Missing Data Exploration

# excluding patient ID, and log of body region sums

# percentage of total missing data (33.23%)
sum(is.na(pain[,-c(1, 190:191)]))/prod(dim(pain[,-c(1, 190:191)]))

# BY VARIABLES

# proportions of observed data for each variable
apply(pain[,-c(1, 190:191)], 2, function(x){return(sum(!is.na(x))/length(x))})

# proportions of missing data for each variable
# grouping by variable type
# 5 variable categories: pain region/other by baseline/follow-up & other variables
missing_cols <- data.frame(variable=as.vector(names(pain[,-c(1, 190:191)])),

type=c(rep("baseline pain region", 74),
rep("other baseline feature", 14),
rep("follow-up pain region", 74),
rep("other follow-up feature", 10),
"other baseline feature",
"other follow-up feature",
rep("other baseline feature", 7),
rep("other study variable", 7)),

missing=as.vector(apply(pain[,-c(1, 190:191)], 2,
function(x){

return(sum(is.na(x))/length(x))})))
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# density plot grouping by variable type
md_plot1 <- ggplot(missing_cols, aes(x=missing, fill=type)) +

geom_density(alpha=0.4, lwd=0.2) +
labs(title="Missing Data Distribution",

x="Proportion of Missing Data",
fill="Variable Type") +

theme(plot.title=element_text(size=10),
axis.title.x=element_text(size=8, hjust=1),
axis.title.y=element_blank(),
legend.title=element_text(size=7),
legend.text=element_text(size=7))

# BY OBSERVATIONS

# introducing new missingness variables
pain_miss <- pain[,-c(1, 190:191)]

# each observation's number of missing baseline, follow-up, and other features
pain_miss$baseline_missing <- as.vector(rowSums(is.na(

pain_miss[, missing_cols[grep("baseline",
missing_cols$type), 1]])))

pain_miss$followup_missing <- as.vector(rowSums(is.na(
pain_miss[, missing_cols[grep("follow-up",

missing_cols$type), 1]])))
pain_miss$other_missing <- as.vector(rowSums(is.na(

pain_miss[,missing_cols[grep("study",
missing_cols$type), 1]])))

# each observation's total missing features
pain_miss$all_missing <- as.vector(rowSums(is.na(pain_miss)))

# indicator for at least 1 missing follow-up feature
pain_miss$followup_missing_bin <- as.vector(as.numeric(pain_miss$followup_missing!=0))

# distribution of missing follow-up features
# by number of missing baseline features across observations
md_plot2a <- ggplot(pain_miss, aes(x=followup_missing,

fill=as.factor(baseline_missing))) +
geom_density(alpha=0.4, lwd=0.2) +
labs(x="Number of Missing Follow-Up Features",

fill="Number of Missing Baseline Features") +
theme(axis.title.x=element_text(size=9, hjust=1),

axis.title.y=element_blank(),
legend.title=element_text(size=9),
legend.text=element_text(size=9),
legend.position="top") +

guides(fill=guide_legend(nrow=1, byrow=TRUE)) +
scale_x_continuous(breaks=seq(0, 90, 10))

# distribution of missing follow-up features
# by number of other missing features across observations
# using log transformation for better visualization
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md_plot2b <- ggplot(pain_miss, aes(x=log(followup_missing),
fill=as.factor(other_missing))) +

geom_density(alpha=0.4, lwd=0.2) +
labs(x="Number of Missing Follow-Up Features",

fill="Number of Other Missing Study Features",
caption="Log Transformation") +

theme(axis.title.x=element_text(size=9, hjust=1),
axis.title.y=element_blank(),
legend.title=element_text(size=9),
legend.text=element_text(size=9),
legend.position="top") +

guides(fill=guide_legend(nrow=1, byrow=TRUE))

# distribution of missing baseline features
# by number of other missing features across observations
md_plot2c <- ggplot(pain_miss, aes(x=baseline_missing,

fill=as.factor(other_missing))) +
geom_density(alpha=0.4, lwd=0.2) +
labs(x="Number of Missing Baseline Features",

fill="Number of Other Missing Study Features") +
theme(axis.title.x=element_text(size=9, hjust=1),

axis.title.y=element_blank(),
legend.title=element_text(size=9),
legend.text=element_text(size=9),
legend.position="top") +

guides(fill=guide_legend(nrow=1, byrow=TRUE)) +
scale_x_continuous(breaks=c(0:10))

## Missing Data Pattern Visualization

# broken up by variable type (5)

# baseline pain regions
# all the same (no missing values) -> showing first and last 5
vis_miss_pr_bl <- vis_miss(

pain[, missing_cols[grep("baseline pain", missing_cols$type), 1][c(1:5, 70:74)]],
warn_large_data=F)

# follow-up pain regions
# all the same -> showing first and last 5
vis_miss_pr_fu <- vis_miss(

pain[, missing_cols[grep("follow-up pain", missing_cols$type), 1][c(1:5, 70:74)]],
warn_large_data=F, show_perc_col=F)

# other baseline features (part 1) - for comparison with other follow-up features
vis_miss_oth_bl <- vis_miss(

pain[, missing_cols[grep("other baseline", missing_cols$type), 1][c(1:10, 15)]],
warn_large_data=F)

# other baseline features (part 2)
vis_miss_oth_bl2 <- vis_miss(

pain[, missing_cols[grep("other baseline", missing_cols$type), 1][c(11:14, 16:22)]],
warn_large_data=F)
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# other follow-up features
vis_miss_oth_fu <- vis_miss(

pain[, missing_cols[grep("other follow-up", missing_cols$type), 1]],
warn_large_data=F)

# all other study variables
vis_miss_all_oth <- vis_miss(

pain[, missing_cols[grep("other study", missing_cols$type), 1]],
warn_large_data=F)

# modeling missing follow-up to find correlation
summary(lm(followup_missing ~ baseline_missing + other_missing +

as.numeric(PROMIS_PHYSICAL_FUNCTION)+
IOC_RESP_5, data=pain_miss))
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